人工智能还能去雾霾?真的!

    编者按:本文来自于微信公众号 “KnowingAI知智”(微信公众号:Knowing_AI), 动点科技经授权发布。

    除了图像识别、图像分类,计算机视觉还有很多有趣应用!

    比如……去雾霾♪(´ε` )

    点击下方视频,你对人工智能的了解就能轻松超过全世界 99% 的人类!

    图文版本送给不方便打开的朋友 (●°u°●)」

    这一季我们讲过人脸识别、结构光,也讲过 SLAM、OCR 等计算机视觉的应用分支,接下来我们会谈谈 CV 相关的有趣应用,比如……去雾霾。

    光穿过雾霾会发生散射,只有一部分能量能到达镜头,因此拍出的照片会呈现出「雾蒙蒙」的效果。想要去掉图片中的雾霾,就要精确估计出雾霾的透射率,再对图像进行恢复。

    暗通道先验是图像去雾霾的经典方法,它基于这样的假设:在没有雾的图像中,一定有某个通道的某个局部非常暗,暗到数值几近于零。这部分可能是阴影、纯色,也可能是黑色的东西。

    有了雾霾,本来应该很暗的部分就会变得灰白。通过这部分的数值计算出雾霾的透射率,找到有雾图像和无雾图像的对应关系,就能去掉图片中的雾霾。

    除了暗通道先验,也有人尝试利用对比度的降低或颜色的衰减来估计雾霾的透射率。还有人尝试使用深度学习,将雾霾作为一种特征进行学习,端到端的完成图像去雾。

    有了图像去雾,雾霾天自动驾驶系统也能准确识别交通标志,添加了自动去雾霾功能的手机,雾霾天也能拍出清晰的照片。

    PS:这种计算机视觉技术(应用)的正式名称为:图像去雾(Haze Removal)。经典方法「暗通道先验」来自计算机视觉顶级会议 CVPR 2009年的「Best Paper」《Single Image Haze Removal Using Dark Channel Prior》,作者何恺明现任 FAIR 研究科学家。

    顺便一提,CVPR 2016年「Best Paper」《Deep Residual Learning for Image Recognition》的作者也是他。

    感兴趣的朋友可以根据这些关键词查找更多信息。