1月15日,上海人工智能实验室对书生大模型进行重要版本升级,书生·浦语3.0(InternLM3)通过精炼数据框架,大幅提升了数据效率,并实现思维密度的跃升。仅使用4T训练数据的InternLM3-8B-Instruct,其综合性能超过了同量级开源模型,节约训练成本75%以上;同时,书生·浦语3.0首次在通用模型中实现了常规对话与深度思考能力融合,可应对更多真实使用场景。

数据是大模型能力提升的重要“推进剂”。目前主流开源模型多以扩大预训练数据规模作为性能提升路径,预训练数据量普遍接近20T token,训练成本也随之线性增长,同时也引起业内关于数据瓶颈和Scaling Law可持续性的思考。上海AI实验室研究团队认为,数据质量的提升带来的增益会显著高于数据规模的提升,而数据的“思维密度”(IQPT,Intelligence Quality per Token)是数据质量的核心,即数据的思考过程中蕴含的逻辑性、复杂性、启发性等。为此,团队提出大规模数据精炼框架,大幅提高了训练数据的质量。在具体实践中,书生·浦语3.0仅使用4T token的预训练数据,即实现主流开源模型18T数据的训练效果。通过构建数据“思维密度”杠杆,撬动模型性能提升,为突破Scaling Law带来了新的研究范式。