75226861_m

10 月 19 日消息,DeepMind 作为谷歌旗下专注于推进人工智能(AI)研究的子公司,在今日发布了新款程序 “AlphaGo Zero”。据了解,凭借 “强化学习” 的机器学习技术,AlphaGo Zero 可以通过自学玩转多种游戏,并在游戏中吸取经验教训。

令人兴奋的是,在训练 AlphaGo Zero 的过程中,为其引入了围棋游戏并学习先进的概念,挑选出一些有利的位置和序列。经过 3 天的训练后,AlphaGo Zero 能够击败 AlphaGo Lee,而后者是去年击败韩国选手李世石的 DeepMind 软件。经过大约 40 天 2900 万场自玩游戏的训练后,AlphaGo Zero 击败了 AlphaGo Master,后者在今年早些时候击败了围棋世界冠军柯洁。

研究结果表明,在不同技术的有效性方面,AI 领域还有很多有待研究的地方。AlphaGo Zero 的开发使用了许多与 AlphaGo Master 相似的方法,但在开始进行自玩游戏之前,它就开始被使用人类数据进行训练。值得注意的是,尽管 AlphaGo Zero 在几周的训练中掌握了几个关键概念,但它的学习方式不同于人类棋手。

此外,AlphaGo Zero 比之前产品的学习能力高效得多。AlphaGo Lee 需要使用几台机器和 48 个谷歌张量处理单元机器学习加速器芯片,该系统的早期版本 AlphaGo Fan 需要 176 个 GPU。而 AlphaGo Zero 和 AlphaGo Master 一样,只需要一台机器和 4 个 TPU。

题图:123RF